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Innovations in ICU                   
ventilation
The future delivered 

Introduction
Many centuries ago, Socrates stated that “the 
secret of change is to focus all of your energy, 
not on fighting the old, but on building the 
new.” Nowadays, we may relate his quote with 
the concept of innovation, which is considered 
the process of turning an idea into a good 
or service that adds value. Innovation must 
satisfy a specific need, involve a deliberate 
application of information, imagination, and 
initiative, and ought to include all processes by 
which new ideas are generated and converted 
into useful products. As physicians, we tend 
to assume regular incremental advances in 
technology and processes, but from time to 
time disruptive innovations take place. 

Even though innovation entails the appli-
cation of useful novel ideas, these should 
address our specific challenge: taking care of 
the patients’ needs. New ideas must accept the 
pathophysiology, at least to a certain level, and 
aim to prevent further harm. We are bystanders 
of an exponential increase in knowledge and 
face complex situations with small response 
time. Therefore, modern technology comes to 
play, providing critical care with new tools that 
meet three major goals: improving manage-
ment, making better decisions and being 
more effective in patient care (Pettenuzzo and 
Fan 2017; Schulman and Richman 2019). In 
the following paragraphs, some examples of 
these technological advances are presented.

Advanced monitoring
As healthcare professionals, we face one of our 
first issues: the visualisation and interpretation 
of the enormous quantities of patient-specific 
data in an extensively monitored environment. 

Continuous assessment of respiratory status 
and optimisation of ventilator settings are 

one of the keystones of advanced monitoring 
systems, improving our understanding of the 
disease and the effect of therapeutic strategies 
(Theerawit et al. 2017; Ergan et al. 2018). 
Current monitors integrate several param-
eters at the same time, providing cleared-up 
information to the user. 

In this context, and in order to implement 
the best possible medicine, clinical decision 
support systems (CDSS) have been born to stay. 
CDSS could be defined as health information 
technology that builds upon the foundation 
of an electronic health record system, grant-
ing specific, filtered and organised informa-
tion (Josheroff et al. 2012; Korngiebel et al. 
2017). In other words, CDSS aid to address the 
challenges of big data in an era of precision 
medicine, helping patients and clinicians to 
make optimal decisions. Some authors have 
proposed that CDSS address 5 rights: deliver-
ing the right evidence-based information, to 
the right people (healthcare professionals), in 
the right format, through the right channels 
and at the right time (Sirajuddin et al. 2009). 
From our point of view and experience, we 
also consider that the CDSS must fulfill a set 
of requirements, grouped in Figure 1. CDSS 
will mean a change in our day-to-day work, 
as they will be able to predict the emergence 
of complications and will help select the best 
possible treatment for each individual patient. 
However, these outcomes will require joint 
work of healthcare professionals and machine 
or Deep Learning systems, especially when 
a Blockchain Data Encryption System is fully 
integrated (Mandl and Manrai 2019).

Current examples of applied CDSS are 
outreach rapid response teams and use of 
early warning scores (Vincent et al. 2018). 
An example of the latter takes place at our 

department, with an ongoing project named 
ICU without walls. It consists in applying 
computer systems including an algorithm 
that monitors vital signs of patients admit-
ted to the hospital, in order to allow an early 
identification of deterioration, decreasing the 
incidence of organ failure (including respira-
tory failure and need of ventilatory support), 
and enabling rapid targeted management 
(Gordo and Molina 2018). Other examples 
of applied CDSS are open-loop physiologic 
model-based decision support systems (Rees 
2011; Tams et al. 2017; Karbing et al. 2018; 
Spadaro et al. 2018); and multimodal CDSS, 
which incorporate data from bedside, wire-
less and third-party devices, to upload the 
information on a platform (Figure 2).

In this article, we aim to summarise the developments in mechanical ventila-
tion that we believe are shaping the present and will shape the future ahead. 
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In addition to ground-breaking monitoring, 
lung imaging techniques have experienced 
overwhelming progress: we currently not only 
base our knowledge on chest x-ray or computed 
tomography, but use lung ultrasound, positron 
emission tomography, electrical impedance 
tomography or magnetic resonance imaging 
as decision support tools. As ultrasonography 
is an evolving part of critical care medicine, 
it lends itself to innovative applications. Even 
though its results/images depend on the 
operator and the patient’s characteristics 
(obese patients, thoracic dressings, subcu-
taneous emphysema), lung ultrasound may 
visualise pleural effusion and consolidation 
(alveolar consolidation, atelectasis), and has 
demonstrated a potential utility in several 
clinical conundrums: (a) during the process 
of recruitment manoeuvres (strong correlation 
between PEEP-induced lung recruitment and 
lung ultrasound aeration score), (b) during 
fluid resuscitation of ARDS patient, avoiding 
fluid overload (impairment correlated with 

extravascular lung water), and (c) during 
the process of weaning the patient from 
mechanical ventilatory support [including 
diaphragmatic ultrasound] (Mayo et al. 2016; 
Lui and Banauch 2017).

Conversely, electrical impedance tomography 
(EIT) has been a remarkable technological 
advance in the field of lung monitoring, and 
mechanical ventilation adjustments EIT may 
assist in (a) defining mechanical ventilation 
settings, (b) assess distribution of tidal volume 
and of end-expiratory lung volume, (c) contrib-
ute to titrate PEEP/tidal volume combinations 
and (d) quantify gains (recruitment) and losses 
(overdistention or de-recruitment), granting a 
more realistic evaluation of different ventilator 

the complexity of 
mechanical ventilation 

and of ventilators causes 
more than one headache to 
healthcare professionals; 
automation of ventilation 

settings could yield a 
solution

Figure 2. Example of CDSS interface. Beacon Caresystem® (Mermaid Care A/S, Nørresundby, Denmark) providing 
real-time information and recommendations regarding ventilator settings.

Figure 1. CDSS requirements. 
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modes or recruitment manoeuvres (Lobo et al. 
2018) (Figure 3). EIT also contributes to the 
management of life-threatening lung diseases 
such as pneumothorax, and aids in guiding 
fluid management in the critical care setting. 
Indications for the use of EIT at the bedside 
are especially promising in the light of the 
first results, although its use on a daily basis 
will be the result of the clinicians’ acquired 
experience over the years. 

Ventilation strategies
Potential optimisation of ventilation bundles 
starts by re-evaluating the crucial components 
of respiratory mechanics (Bos et al. 2018). 
After more than half a century of modern 
positive-pressure ventilation, it seems that 
mechanical ventilation has a fairly narrow 
therapeutic index between the effective and 
damaging dose. Targets have changed from 
aiming normal oxygen, pH or carbon dioxide 
levels, to tolerating atelectasis and accepting 
low arterial oxygen levels and/or hypercapnia. 
Moreover, and as part of what could be called 
muscle protective ventilation strategies, a big 
effort has been put into preventing or shorten-
ing the use of mechanical ventilation as much 
as possible, besides using ventilator settings 
that are considered to be “lung protective.” 

The complexity of mechanical ventilation 
and of ventilators causes more than one head-
ache to healthcare professionals. In the face 
of this conundrum, automation of ventilation 

settings could yield a solution (Rose et al. 
2015; Branson 2018). Closed-loop systems 
have been classified into simple, physiologi-
cal signal-based and explicit computerised 
protocols or ECP (Wysocki et al. 2014). ECP 
systems use multiple inputs to control one 
or several ventilator outputs. Some examples 
of automation of mechanical ventilation are: 
Adaptive Support Ventilation (ASV; which 
titrates ventilator output on a breath-to-
breath basis providing a preset level of minute 

ventilation while minimising work of breath-
ing), Intellivent ASV (an extension of ASV, 
including automated selection of FiO2 and 
PEEP) (Bialais et al. 2016), and SmartCarePS 
(control of pressure support level based on 
the patient’s respiratory characteristics) (Rose 
et al. 2008). Other examples available on the 
market (although not totally automated) are 
proportional assisted ventilation plus (PAV+) 
and NAVA. 

Likewise, patient-ventilator interaction still 
represents a challenge for most healthcare 
professionals (Pham et al. 2018; Subira et 
al. 2018). Asynchronies cause discomfort, 

increase dyspnoea, may induce lung injury 
and prolong ventilator use. Current knowl-
edge on asynchronies mainly comes from 
small physiologic or observational studies, 
and precise information, such as epidemiol-
ogy, assessment, and management, is lacking 
(Gutierrez et al. 2011; Longhini et al. 2017). 
We must therefore, deepen our understanding 
of the principles of respiratory physiology 
and respiratory system mechanics and, as 
a scientific community, join forces against 
asynchronies. New technologies may help 
us in their management (predicting and 
preventing them), but there's still a long 
way to go. 

The future: big data and artificial 
intelligence
Alongside big data techniques, new approaches 
such as deep machine learning and artificial 
neural ICU data integration are starting to 
become effective tools for data analysis 
(Lovejoy et al. 2019; Nunez Reiz 2019). Big 
data analysis is employed in other fields, such 
as marketing, banking, and logistics. But in 
healthcare, it depends, at least partially, on 
data entered by the professionals. Which 
information is more relevant? Have we been 
trained to know how to prioritise correctly? 

In this new era, artificial intelligence (AI) 
is beginning to receive interest. In AI, data 
is fed into the computers, which detect and 
implement the rules, and continuously assess 
the information to re-calibrate if needed. 
AI could reduce the inter-clinician vari-
ability and offer other benefits, as search of 
complex relationships in the vast quantity of 
data, analyse variables to predict outcomes 
of interest and develop additional models 
that could aid healthcare professionals in 
extracting useful information for clinical 
decision making. 

Ongoing examples of research in AI: 
A)	 Neural networks for breathing-pattern 

recognition: machine learning algorithms 
that have the ability to learn input and 
output relationships from sets of data; 
being able to detect asynchronies and 
wean patients (Kuo et al. 2015). 

B)	 Decision tree classification, such as the 
AEGLE project, for predicting risk of 
certain events using logistic regression 

we must deepen our 
understanding of the 

principles of respiratory 
physiology and respiratory 

system mechanics

Figure 3. Pulmovista® 500 (Dräger Medical GmbH, Lündbeck, Germany). After recruitment we can observe                
overdistension (orange colour) and collapse (grey colour), being able to infer an optimal PEEP value.
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models that recognise patterns of data, 
which are then used as inputs for a 
machine learning based patient-specific 
algorithm to evaluate the risk that a 
specific event or outcome (Olive and 
Owens 2018). 

C)	 Development of smart alerts via machine-
learning methods to avoid ever-growing 
evidence of alarm fatigue (Kane-Gill et 
al. 2017, Winters et al. 2018).

Conclusion
We are looking at a progressive shift in the 
intensive care standards of care. Modern 
ICU environment is data-rich, providing 
fertile soil for the development of new and 
more accurate technologies, where clinical 
decision-making is being assisted by comput-
ers that integrate and analyse recollected 
data. Accurate predictive models to anticipate 
events, better decision support tools, and 
greater personalisation of care are becoming 
a quality standard. 

However, we would like to point out two 
concerns. Firstly, ICU data integration is the 
main challenge in developing effective tools 
for data analysis. We need big databases, 
such as MIMIC (Multiparameter Intelligent 
Monitoring in Intensive Care), that can supply 

our computers all possible variables (e.g. 
physiologic, haemodynamic and demographic 
variables needed to develop a CDSS for the 
prediction of in-hospital mortality), highlight-
ing the importance of clinical expertise in the 
development of data-driven analytic models. 
Secondly, the introduction of new accurate 
tools must be prudent (Gonzalez de Molina 
Ortiz et al. 2018; Urner et al. 2018; Clarissa 
et al. 2019). Technological development 
must respond to the real needs of patients 
and clinicians. As healthcare professionals, 
our primary goal is the meticulous care of 
our patients and their families. In the face of 
booming technologies, we need to promote 
further the humanisation of intensive care. We 
are compelled to strive, first and foremost, 
proper sedation management, promote rest-
ful sleep, encourage early mobilisation, and 
encourage family involvement in patient care. 
Within ventilatory management, we ought 
to tackle the intrinsic problems that result 
in the non-application of lung protective 
strategies [such as low tidal volume, moni-
tor of driving pressure, etc.] (Bellani et al. 
2016). We should, therefore, focus on solving 
problems and seek appropriate strategies for 
interprofessional collaboration that bring this 
technological development closer. 
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Abbreviations

AI	 Artificial Intelligence 
ASV	 Adaptive Support Ventilation
CDSS 	 Clinical Decision Support Systems
ECP	 Explicit Computerised Protocols  
EIT 	 Electrical Impedance Tomography 
FiO2	 Fraction Of Inspired Oxygen
ICU	 Intensive Care Unit
NAVA	 Neurally Adjusted Ventilatory Assist
PAV+	 Proportional Assisted Ventilation Plus 
PEEP	 Positive End-Expiratory Pressure

Key points

•	 Modern technology can provide critical care 
with new tools that meet three major goals: 
improving management, making better deci-
sions and being more effective in patient care 

•	 Clinical decision support systems (CDSS) 
address 5 rights: delivering the right evidence-
based information, to the right people in the 
right format, through the right channels and 
at the right time

•	 In addition to ground-breaking monitoring, 
lung imaging techniques have also experi-
enced overwhelming progress

•	 Artificial Intelligence (AI) is beginning to re-
ceive interest and could reduce inter-clinician 
variability and offer other benefits




