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Chronic respiratory dialysis
Extracorporeal carbon dioxide removal is emerging as a potential strategy to manage 
acute hypercapnic respiratory failure. There may be an opportunity to use similar 
techniques to manage chronic hypercapnic respiratory failure, in what may be termed 
"chronic respiratory dialysis", potentially altering the physiological and clinical effects 
of chronic hypercapnia associated with certain chronic lung diseases.

The use of extracorporeal gas exchange 
support for respiratory failure has 
grown rapidly and in parallel with 

improvements in extracorporeal technology 
that have led to more efficient gas exchange 
with potentially more favourable risk profiles 
(Thiagarajan et al. 2017). This growth has 
predominantly come from the increased use 
of extracorporeal membrane oxygenation 
(ECMO) for the most severe forms of the 
acute respiratory distress syndrome (ARDS) 
(Karagiannidis et al. 2016). However, there 
is an evolving interest in the use of extra-
corporeal carbon dioxide removal (ECCO

2
R) 

for both acute and chronic respiratory failure 
(Deniau et al. 2016; Morelli et al. 2017), with 
a current focus on its potential to facilitate 
the minimisation or avoidance of invasive 
mechanical ventilation and its associated 
consequences (Abrams and Brodie 2013). 

As the technology continues to evolve, the 
question arises as to whether ECCO

2
R could 

play a role in the management of chronic 
hypercapnic respiratory failure by decreasing 
the respiratory load in patients with advanced 
lung disease.

Differences between ECMO and     
ECCO

2
R

Although technically consisting of the same 
circuit components as ECMO (e.g. cannulae, 
tubing, gas exchange membrane, and most 
frequently incorporating a centrifugal pump), 
the difference between ECMO and ECCO

2
R 

is that the intention of ECCO
2
R is specifically 

carbon dioxide removal without emphasis 
on oxygenation, whereas ECMO is intended 
to provide both carbon dioxide removal 
and significant oxygenation—a distinction 
that has important clinical implications. 
Oxygenation is, in large part, dependent on 
the amount of extracorporeal blood flow 
in order to saturate a sufficient amount of 
haemoglobin. This typically necessitates the 
use of large cannulae to achieve adequate 
blood flow to meet the needs of patients 
with severe hypoxaemia (Schmidt et al. 
2013). In contrast, carbon dioxide removal 
is much more efficient than oxygenation, 
allowing for the use of lower blood flow 
rates than in ECMO, potentially even within 
the range of what may be used for continu-
ous venovenous haemodialysis (CVVH), 
though without significant contribution to 
oxygenation. With less demand for blood 
flow, ECCO

2
R can be achieved with smaller 

cannulae, comparable to dialysis catheters, 
which may have an improved risk-benefit 
profile compared to ECMO (Morelli et al. 

2017). Additional modalities that are being 
explored to further optimise the efficiency 
of ECCO

2
R, by maximising the gradient of 

carbon dioxide across the membrane, include 
the use of electrodialysis, blood acidification 
and carbonic anhydrase (Arazawa et al. 2012; 
Zanella et al. 2015; 2014). 

ECCO
2
R devices

The derivation of ECCO
2
R devices has come 

from several directions—downsizing of circuits 
originally intended for ECMO in order to 
accommodate lower blood flow rates (e.g. 
Novalung, Xenios AG, Heilbronn, Germany); 
modifications to circuits intended for CVVH 
(e.g. PrismaLung, Baxter, Illinois, USA); and 
devices designed specifically for the inten-
tion of providing ECCO

2
R (e.g. Hemolung 

RAS, ALung, Pennsylvania, USA). Conceptu-
ally similar, each of these devices may have 
circuit-specific advantages and risks, with no 
single device as yet proving to be superior 
for carbon dioxide removal over another. 
Several of these devices are being used as 
part of prospective, randomised controlled 
trials of ECCO

2
R for various aetiologies of 

acute respiratory failure (Fanelli et al. 2016; 
McNamee et al. 2017).

Potential uses of ECCO
2
R

In theory, ECCO
2
R can be used for any clinical 

scenario in which the goal is extracorpo-
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real management of ventilation, and when 
oxygenation is supportable by other means. 
An area of active investigation is ECCO

2
R 

for ARDS in order to facilitate reductions 
in tidal volumes, plateau airway pressures, 
and respiratory rates to minimise the extent 
of ventilator-associated lung injury (VALI) 
(Abrams and Brodie 2013; Bein et al. 2013; 
Fanelli et al. 2016; Grasso et al. 2014; Terragni 
et al. 2009). Beyond ARDS, and perhaps 
the more obvious target of carbon dioxide 
removal is the potential role of ECCO

2
R in 

acute hypercapnic respiratory failure, such as 
may be encountered in acute exacerbations 
of chronic obstructive pulmonary disease 
(COPD), cystic fibrosis, and severe status 
asthmaticus, among others. ECCO

2
R-facilitated 

correction of respiratory acidosis has been 
shown to be feasible in patients with acute 
hypercapnic respiratory failure in the setting 
of COPD exacerbations that has either not 
responded to noninvasive ventilation (NIV), 
or has persisted despite invasive mechanical 
ventilation (Abrams et al. 2013; Del Sorbo et 
al. 2014; Kluge et al. 2012). ECCO

2
R, through 

correction of the respiratory acidosis, may 
reduce the work of breathing (which, in turn, 
reduces the production of carbon dioxide 
by the respiratory muscles, decreasing the 
overall carbon dioxide load to be excreted) 
(Cardenas et al. 2009; Diehl et al. 2016), 
dynamic hyperinflation, and potentially the 
need for ongoing mechanical ventilatory 
support, in turn facilitating early mobilisation 
and rehabilitation and avoiding the compli-
cations of ventilator-associated pneumonia 
and worsening hyperinflation (Abrams et 
al. 2013). Similarly, ECCO

2
R has been used 

for acute hypercapnic respiratory failure in 
the setting of advanced chronic lung disease 
as a bridge to lung transplantation, often 
with the ability to avoid invasive mechanical 
ventilation prior to transplantation (Biscotti 
et al. 2017; Fuehner et al. 2012). 

ECCO
2
R may be capable of correcting 

hypercapnic respiratory failure in the acute 
settings, but what about in the chronic setting 
as a means of consistently resetting carbon 
dioxide levels in patients with decreased 
ventilatory capacity from chronic lung disease? 
In this context, carbon dioxide removal could 
function as a form of chronic respiratory 
dialysis (Ranieri et al. 2017). 

Carbon dioxide is stored in several forms 
within the body, the vast majority of which 
is as bone carbonate (very slowly exchanged) 
and bone bicarbonate (slowly exchanged) 
(Cherniack and Longobardo 1970). The 
remaining carbon dioxide is stored as blood 
bicarbonate, dissolved gas in plasma, carb-
amino compounds within erythrocytes, and 
free gas within alveoli, all of which is more 
readily exchanged. If an ECCO

2
R -like device 

could remove carbon dioxide at a rate and 
frequency that would allow for meaningful 
reductions in carbon dioxide stores that are 
not typically accessed, it may be theoretically 
feasible to recalibrate the baseline plasma 
carbon dioxide levels in patients with chronic 
hypercapnic respiratory failure. By decreasing 
the ventilatory requirements in patients with 
already limited ventilatory capacity, such a 
device might sufficiently reduce the work 
of breathing, the respiratory load and the 
amount of carbon dioxide produced, as well 
as facilitate improvement in the hyperinflation 
and gas trapping that increases dead space 
and puts respiratory muscles at a mechanical 
disadvantage (McKenzie et al. 2009; Tobin 
et al. 2009). 

While theoretically this has the potential 
to be a therapeutic option, there are many 
aspects of chronic respiratory dialysis that 
require further investigation prior to any 
consideration of clinical application. Most 
importantly, there needs to be a better under-
standing of the kinetics of carbon dioxide 
exchange, particularly in regards to the rate 
of exchange between blood and bone or 
other stores of carbon dioxide (Cherniack 
and Longobardo 1970). This relationship will 
help inform the frequency and intensity of 
ECCO

2
R that would need to be applied on a 

chronic basis to have a meaningful effect on 
carbon dioxide levels. Mathematical modelling 
and physiological studies would be helpful 
in providing this information. 

Secondly, in whom should chronic respi-
ratory dialysis be considered? Patients with 
COPD with chronic hypercapnic respiratory 
failure have shown variable responses to the 
chronic use of NIV on blood carbon dioxide 
levels and exacerbation rates (Elliott et al. 
1991; Meecham Jones et al. 1995; Murphy 
et al. 2017; Ramsay and Hart 2013; Struik 
et al. 2014). The discrepancy in findings 

from two randomised controlled trials of 
NIV for the management of hypercapnia that 
persisted after acute exacerbations of COPD 
highlights an important point regarding the 
potential use of carbon dioxide removal for 
the management of chronic hypercapnia 
(Murphy et al. 2017; Struik et al. 2014). NIV 
may be effective in maintaining long-term 
control of hypercapnia in some patients and 
is clearly a less invasive approach than carbon 
dioxide removal (Ramsay and Hart 2013). 
However, there are patients within this popu-
lation who are non-responders to long-term 
NIV management, particularly as it relates to 
control of hypercapnia, and perhaps would 
be suitable for chronic respiratory dialysis as 
an alternative. The data for efficacy of NIV 
for the management of hypercapnia in cystic 
fibrosis and other forms of bronchiectasis are 
limited to small trials with inconsistent results 
(Moran et al. 2017). Select patients within 
these populations who are non-responsive 
to or intolerant of NIV may likewise be 
considered potential candidates for chronic 
respiratory dialysis.

Identifying the appropriate subset of 
patients that should be studied will require 
further analysis of existing data and prospec-
tive trials that are ideally enriched with 
patients most likely to respond to the use 
of chronic carbon dioxide removal based on 
physiologic and other predictive factors. This 
type of modelling has been proposed in the 
acute setting (Goligher et al. 2017; Lindberg 
et al. 2017). There are also practical applica-
tions that should be considered, including 
how one would actually physically initiate 
carbon dioxide removal and whether this 
might influence the target population for 
further study. Patients with chronic hyper-
capnic respiratory failure and end-stage renal 
disease who receive haemodialysis through 
tunnelled catheters or arteriovenous fistulae 
or grafts would have pre-existing access 
that might be suitable for the application of 
carbon dioxide removal. To that end, future 
iterations of carbon dioxide removal technol-
ogy might be combined with renal dialysis 
machines, facilitating the performance of 
both processes simultaneously (Forster et al. 
2013; Husain-Syed et al. 2016; Quintard et 
al. 2014; Romagnoli et al. 2016). However, 
the convenience of studying such a patient 
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population may be offset by the coexisting 
burden of comorbidities that may negatively 
impact any long-term benefit gained from 
chronic respiratory dialysis. Instead, if patients 
were to require dedicated access for carbon 
dioxide removal, one must consider what 
form that would take—tunnelled catheter, 
fistula, graft—and whether that access would 
be appropriate to sustain the low blood flow 
rates typically used for ECCO

2
R. 

Conceptually, the idea of intermittent 
ECCO

2
R for chronic hypercapnic respiratory 

failure does not differ to any great degree 
from a hypothetical destination device for 
the support of severe, end-stage respiratory 
failure from other aetiologies, a so-called 
artificial lung, which could likewise be 
referred to as ‘chronic respiratory dialysis’. 
The main practical differences would be the 
intermittent versus continuous use of the 
device, and whether carbon dioxide removal 
alone, or both carbon dioxide removal and 
oxygenation are needed, which would have 
significant implications for the amount of 
blood flow needed and the type and source 
of gas supplied.

When considering chronic respiratory 
dialysis, special attention will need to be paid 
to its effect on the physiology of gas exchange. 
A carbon dioxide removal device that removes 
a considerable amount of carbon dioxide 
while contributing a negligible amount to 
oxygenation may have unanticipated conse-
quences for oxygenation. Imagine that fifty 
percent of the total body carbon dioxide 

production is removed by the device, with 
unchanged oxygen transfer by the patient's 
native lungs. The respiratory exchange ratio 
of the native lungs would then be reduced 
by half, to approximately 0.4 (from a normal 
value of 0.8). According to the alveolar gas 
equation, the partial pressure of oxygen in 
the alveolus would reach unacceptably low 
levels, and an enrichment of the inspired 
fraction of oxygen would become necessary.

Economic considerations
In addition to the clinical implications, one 
must consider the potential economic impact 
of such a strategy on, potentially, a very large 
patient population for a long period of time, 
much in the way haemodialysis has impacted 
patients with advanced renal failure (Li et al. 
2017). Aside from the cost of the technol-
ogy itself, the potential of increasing the 
life expectancy of patients known to have 
multiple comorbidities (e.g. cardiovascular 
disease) may substantially increase overall 
healthcare costs (Wacker et al. 2017). 

What constitutes success?
Lastly, there is no consensus on what consti-
tutes success of chronic respiratory dialysis. 
Normalisation of the carbon dioxide in a 
chronic respiratory acidosis may be achiev-
able as a physiological endpoint, but it must 
also demonstrate improvement in clinically 
meaningful outcomes for it to have any role 
in clinical practice. Quality of life, exercise 
capacity, rate of exacerbations, and mortal-

ity would all be appropriate endpoints for 
future studies, accompanied by the applicable 
cost-benefit analyses.   

Conclusion
In conclusion, advances in extracorporeal 
gas exchange have created an opportunity 
to intervene upon both acute and chronic 
hypercapnic respiratory failure. A better 
understanding of the physiology behind 
carbon dioxide metabolism and how that 
might impact the application and effec-
tiveness of chronic respiratory dialysis 
is needed in order to understand which 
patients might benefit from this potential 
therapeutic strategy. 
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